Effects of Domain Boundaries on the Diffraction Patterns of One Dimensional Structures

نویسندگان

  • Frederic Timmer
  • Joachim Wollschläger
چکیده

Motivated by diffraction experiments on the ( 2 √ 3 × √ 3 ) R30◦ reconstructed Si(111) due to deposition of rare earth elements (Dy, Tb) and silicide formation we analyse the splitting and non-splitting of superstructure spots. For this purpose, we model diffraction patterns for one dimensional structures generated by the binary surface technique and use supercell models to keep the analysis simple. Diffraction pattern are calculated in the framework of the kinematical diffraction theory and they are analyzed as a function of the domains and domain boundaries. Basic properties of the diffraction pattern are analyzed for model systems of a two-fold and a three-fold periodicity. The rules derived from these calculations are applied to the "real-world" system of Si(111)-( ( 2 √ 3 × √ 3 ) R30◦)-RESi2 (RE = Dy or Tb). Depending on the combination of domains and domain boundaries of different types a plethora of different features are observed in the diffraction patterns. These are analyzed to determine the sizes of both domain boundaries and domains from experimentally observed splitting of specific superstructure spots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Amplification of Peak Ground Acceleration, Velocity, and Displacement by Two-Dimensional Hills

There are valuable investigations on the amplification effects of the topography on the seismic response in the frequency domain; however, a question is that how one can estimate the amplification of time domain peak ground acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) over the topographic structures. In this study, the numerical approach has been used for t...

متن کامل

The effect of substrate temperature on fabrication of one-dimensional nanostructures of Tellurium

Tellurium nanostructures have been prepared by physical vapor deposition method in a tube furnace. The experiments were carried out under argon gas flow at a pressure of 1 mbar. Tellurium powder was evaporated by heating at 350°C and 430°C and was condensed on substrates at 110–250°C, in the downstream of argon gas flow. The products were characterized by field emission scanning electron micros...

متن کامل

The effect of substrate temperature on fabrication of one-dimensional nanostructures of Tellurium

Tellurium nanostructures have been prepared by physical vapor deposition method in a tube furnace. The experiments were carried out under argon gas flow at a pressure of 1 mbar. Tellurium powder was evaporated by heating at 350°C and 430°C and was condensed on substrates at 110–250°C, in the downstream of argon gas flow. The products were characterized by field emission scanning electron micros...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

Dynamic Analysis of Cylindrically Layered Structures Reinforced by Carbon Nanotube Using MLPG Method

This paper deals with the dynamic analysis of stress field in cylindrically layeredstructures reinforced by carbon nanotube (CLSRCN) subjected to mechanical shock loading.Application of meshless local integral equations based on meshless local Petrov-Galerkin(MLPG) method is developed for dynamic stress analysis in this article. Analysis is carriedout in frequency domain by applying the Laplace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016